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aterials with a remarkable combi-

nation of high electrical conduc-

tivity and optical transparency
are important components of various opto-
electronic devices such as organic light
emitting diodes (OLEDs) and solar cells.?
In the case of solar cells, these components
work as anodes to extract separated charge
carriers from the absorbing region, while in
the case of OLEDs, they inject charge carri-
ers without affecting the light out-coupling
efficiency. Doped metal oxide films such as
tin-doped indium oxide (ITO) and fluorine-
doped tin oxide have single-handedly
dominated the field for almost four de-
cades.? The ability to deposit these materi-
als with controlled thickness and controlled
doping concentration has significantly con-
tributed to their widespread application.
However, the next generation of optoelec-
tronic devices requires transparent conduc-
tive electrodes (TCEs) to be lightweight,
flexible, cheap, and compatible with large-
scale manufacturing methods, in addition
to being conductive and transparent. These
requirements severely limit the use of ITO
as transparent conductors because ITO films
fail under bending, restricting their use in
flexible optoelectronic devices.* In addition,
the limited availability of indium sources re-
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sulting in ever-increasing prices of indium
creates an urgent need to find other ma-
terials that can work as transparent conduc-
tors for future optoelectronic devices.

The question arises: what materials can
fulfill these requirements? Having realized
the need to replace ITO, the research com-
munity has made significant advances in
this direction, with identification and evalu-
ation of potential candidate materials. The
most significant materials among these are
carbon nanotube (CNT) films,>~7 graphene
films,®~1° metal gratings,’” and random net-
works of metallic nanowires.'>'* Figure 1
represents these different materials used
for various optoelectronic applications.

Leading the Pack: Nanotube and Nanowire
Networks. Great efforts by many research
groups have led to significant improve-
ments in the performance of CNT films and
their subsequent applications in display''
and photovoltaic devices.'® Figure 1a shows
a typical scanning electron micrograph
(SEM) of well-interconnected nanotube
films, obtained using vacuum filtration and
a poly(dimethyl siloxane) (PDMS)-assisted
transfer technique and subsequently used
for an OLED.™ One of the critical require-
ments for CNT films is that the density of
nanotubes must be above the threshold for
the formation of a percolation network."”
Although the conductivity of individual
nanotubes is high, the high resistance at
the nanotube—nanotube junction limits
the conductivity of these films.'® Research-
ers have devised many approaches to en-
hance the conductivity of these films by ma-
nipulating surfactant molecules, using
various acid treatments, and so on.'” In gen-
eral, CNT films are comparatively inexpen-
sive and can be fabricated over large areas
in various thicknesses and patterns; how-
ever, their performance still lags behind
those of ITO films. For example, to achieve
a sheet resistance of 10 ohms/sq, CNT films
need to be >100 nm thick, severely
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search in this direction is still in its
infancy and would require scalable
approaches to fabricate these films.
A New Contender: Graphene. An-
other promising candidate for this
purpose is graphene films.
Graphene is a single sheet of sp?
bonded carbon atoms. As a zero
band gap semiconductor, its elec-
tronic structure is unique in the
sense that charge carriers are delo-
calized over large areas, making it a
scattering-free platform for carrier
transport.° High Fermi-velocity and
the ability to dope the graphene
films externally result in extremely
high in-plane conductivities.?' In
their article in this issue, Wu et al.
have demonstrated the application
of solution-processed graphene
films as transparent conductors in
OLEDs.?? Using such films, they
achieve OLED performance similar
to a control device on ITO transpar-
ent anodes. The graphene used by
the authors is prepared using Hum-

Figure 1. Various candidate materials for transparent and conductive electrodes. (a)
Scanning electron micrograph (SEM) of a carbon nanotube (CNT) film, (b) SEM of a sil-
ver nanowire network film with high optical-to-electrical-conductivity ratio, (c) SEM of
a Au nanowire grating fabricated using the nanoimprinting technique, and (d) atomic
force microscopy (AFM) image of solution-processed graphene flakes. Panel A repro-
duced from ref 14. Copyright 2006 American Chemical Society. Panel B reproduced from
ref 13. Copyright 2009 American Chemical Society. Panel C reproduced with permis-
sion from ref 11. Copyright 2007 Wiley-VCH Verlag GmbH & Co. KgaA. Panel D repro-
duced with permission from ref 23. Copyright 2008 Nature Publishing Group.
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affecting their transparency. New
approaches are being explored to
enhance the performance of CNT
films.

Along the same lines, a random
network of metal nanowires and or-
dered arrays of metallic nanostruc-
tures have recently been put for-
ward as leading candidate
materials. Initial results show that
films of metal nanowires exhibit
performances that rival those of ITO,
with sheet resistances approaching
~16 ohms/sq at a transparency of
~86%.'? Recently, small-molecule
photovoltaic cells were fabricated
on silver nanowire networks and
were shown to compete well with
cells fabricated on traditional ITO
films.’? Figure 1b shows a SEM of a
silver nanowire film obtained using
a cellulose-assisted transfer method
with opc/oop values approaching
~500."3

Use of surfactant-free silver
nanowires eliminates the need for
high-temperature annealing, thus
enabling their deposition on flex-
ible substrates'® for subsequent ap-
plication in flexible optoelectronic

devices. Similarly, a nanowire grat-
ing structure with well-defined di-
mensions represents an ideal con-
figuration for device applications
(Figure 1c). This approach enables
manipulation and optimization of
parameters such as line-width,
thickness, pitch, and also different
metals, to obtain electrodes with
low sheet resistance and high trans-
parency. For instance, using 40-nm-
thick Au gratings, an electrode with
13 ohms/sq sheet resistance was
demonstrated for OLED applica-
tions.”! Although this is a good start
for metal nanowire networks, re-
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mers’ method followed by vacuum
annealing to reduce the graphene
oxide. Previously, Kaner's group?
demonstrated that graphene sheets
produced in this manner can be uni-
form and can have extremely small
thicknesses (Figure 1d). Small mol-
ecules such as N,N'-di-1-naphthyl-
N,N'-diphenyl-1,1"-biphenyl-
4,4'diamine/tris(8-hydroxyquinoline)
aluminum (NPD/Alqs) were vacuum-
deposited followed by top cathode
deposition to complete the OLED
fabrication. These devices resulted in
current drive and light emission in-
tensity comparable to those pre-
pared on ITO electrodes. In addition,
the turn-on voltage for the devices
was 4.8 V, as compared to 3.8 V for
ITO devices. The most significant re-
sult comes from the external quan-
tum efficiency (EQE) measurements,
which show that EQE and power effi-
ciency for the graphene devices
nearly matches the ITO-based de-
vices, despite having a sheet resis-
tance of ~800 ohms/sq, nearly 2 or-
ders of magnitude higher than the
ITO sheet resistance.

The same group led by Peter
Peumans has previously demon-
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The current report by
Wu et al. puts forward a
strong case for
graphene as a
transparent conductor
given its competitive
performance, even with
significantly high sheet

resistance.

strated the use of solution-
processed graphene in photovol-
taic devices.?* The current report by
Wu et al. puts forward a strong case
for graphene as a transparent con-
ductor given its competitive perfor-
mance, even with significantly high
sheet resistance. In principle, a
7-nm-thick graphene film would
have a sheet resistance of 1—10
ohms/sq,?2 which would enhance
the charge injection process and
thus lead to a many-fold improve-
ment in performance. This would
still require further development of

synthesis protocols to fabricate
high-quality graphene films.

It is important to point out that
the main factor contributing to the
high sheet resistance of solution-
processed graphene sheets arises
from innumerable grain boundaries
present because of rather small
grain sizes (roughly a few micro-
meters) of graphene flakes, and be-
cause of the presence of many de-
fects in each flake. Recently, a high
temperature chemical vapor depo-
sition (CVD) approach has been
adapted by many groups®3° to
synthesize single- or few-layer
graphene sheets over entire wafers
(Figure 2a,b). Single-crystalline or
polycrystalline metal films (e.g., Cu,
Ni) serve as nucleating templates for
the incoming carbon source gases,
which decompose on the surface of
these metals and initiate formation
of graphene. Although there is still a
need to understand the growth
mechanism, to control the grain
size of graphene flakes, and to de-
velop methods to characterize
these sheets, application of the
CVD technique is a significant ad-
vance in this field and may ulti-
mately be the method to produce
high-quality graphene sheets for
optoelectronic applications. While
solution methods have advantages
in large-scale production and scal-

ability, the CVD method still faces
challenges in large-scale production
at low cost. Toward this end, re-
searchers have developed transfer
techniques that enable transfer of
CVD-grown graphene to various
rigid and flexible substrates,?5~28 in-
creasing their usability as reported
recently in the case of photovolta-
ics.!

CONCLUSION AND OUTLOOK
The questions remain: which
material holds the key to these
problems? Which material can com-
bine high electrical conductivity
with optical transparency, while si-
multaneously being low-cost, scal-
able, and compatible with flexible
substrates? We do not yet know.
The solution may include all or a
combination of the above-
mentioned materials. Initial results
on these materials have been en-
couraging, although issues remain
with large-scale production, techno-
logical improvements in material
quality, and in the cost to fabricate
and to implement these materials.
The key to success is to continue to
explore new materials and to strive
to develop and to optimize meth-
ods to produce these materials on
large scales. If we continue to do so,
we may find the “holy grail” that
combines all of these desirable
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Figure 2. Chemical vapor deposition (CVD) synthesis of single- or few-layer graphene. (A) Optical microscopy image of
graphene grown on Ni film and transferred to a Si/SiO, substrate. Black arrows show flakes of graphene. Inset shows typi-
cal Raman spectra of one-, two-, and three-layer graphene obtained using this method. Reproduced from ref 26. Copyright
2009 American Chemical Society. (B) AFM image of a graphene film grown on a single-crystalline Ni film. Top inset shows full
wafer transfer of this graphene to a Si/SiO, substrate with photolithographically patterned electrodes. Bottom inset shows
a graphene film transferred to a glass substrate, demonstrating its transparency. Panel B insets reproduced with permission

from ref 27. Copyright 2009 IEEE.
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properties for optoelectronic 13.

devices.
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